23 research outputs found

    ANALYSIS OF THE PERFORMANCE OF AN UWB-BASED COOPERATIVE POSITIONING FOR DIFFERENT CAR PLATOON CONFIGURATIONS

    Get PDF
    Abstract. The increasing interest in autonomous vehicles motivates the researches aiming at developing reliable positioning system also in conditions challenging for the Global Navigation Satellite Systems (GNSS), such as in urban canyons, tunnels, under quite dense vegetation. The uso of Ultra Wide-Band (UWB) systems is among the quite well known methods for providing reasonable positioning results without exploiting GNSS. UWB systems are typically used indoors, however their use can be of interest also outdoors, in particular when the need is to ensure good positioning results over a quite small area. This paper investigates the use of UWB systems for positioning in the case of terrestrial vehicles, and, more specifically, it focuses on checking the influence of car platoon configurations on the performance of an UWB cooperative positioning system. In the considered tests, where a high percentage of UWB communications was successful, the obtained results show that the car configuration can have a quite remarkable impact on the positioning performance, doubling the obtained median error

    Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment

    Get PDF
    Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included

    A Comparison Between Uwb and Laser-based Pedestrian Tracking

    Get PDF
    Despite the availability of GNSS on consumer devices enabled personal navigation for most of the World population in most of the outdoor conditions, the problem of precise pedestrian positioning is still quite challenging when indoors or, more in general, in GNSS-challenging working conditions. Furthermore, the covid-19 pandemic also raised of pedestrian tracking, in any environment, but in particular indoors, where GNSS typically does not ensure sufficient accuracy for checking people distance. Motivated by the mentioned needs, this paper investigates the potential of UWB and LiDAR for pedestrian positioning and tracking. The two methods are compared in an outdoor case study, nevertheless, both are usable indoors as well. The obtained results show that the positioning performance of the LiDAR-based approach overcomes the UWB one, when the pedestrians are not obstructed by other objects in the LiDAR view. Nevertheless, the presence of obstructions causes gaps in the LiDAR-based tracking: instead, the combination of LiDAR and UWB can be used in order to reduce outages in the LiDAR-based solution, whereas the latter, when available, usually improves the UWB-based results.Peer reviewe

    Access to primary healthcare during lockdown measures for COVID-19 in rural South Africa: an interrupted time series analysis.

    Get PDF
    OBJECTIVES: We evaluated whether implementation of lockdown orders in South Africa affected ambulatory clinic visitation in rural Kwa-Zulu Natal (KZN). DESIGN: Observational cohort SETTING: Data were analysed from 11 primary healthcare clinics in northern KZN. PARTICIPANTS: A total of 46 523 individuals made 89 476 clinic visits during the observation period. EXPOSURE OF INTEREST: We conducted an interrupted time series analysis to estimate changes in clinic visitation with a focus on transitions from the prelockdown to the level 5, 4 and 3 lockdown periods. OUTCOME MEASURES: Daily clinic visitation at ambulatory clinics. In stratified analyses, we assessed visitation for the following subcategories: child health, perinatal care and family planning, HIV services, non-communicable diseases and by age and sex strata. RESULTS: We found no change in total clinic visits/clinic/day at the time of implementation of the level 5 lockdown (change from 90.3 to 84.6 mean visits/clinic/day, 95% CI -16.5 to 3.1), or at the transitions to less stringent level 4 and 3 lockdown levels. We did detect a >50% reduction in child healthcare visits at the start of the level 5 lockdown from 11.9 to 4.7 visits/day (-7.1 visits/clinic/day, 95% CI -8.9 to 5.3), both for children aged <1 year and 1-5 years, with a gradual return to prelockdown within 3 months after the first lockdown measure. In contrast, we found no drop in clinic visitation in adults at the start of the level 5 lockdown, or related to HIV care (from 37.5 to 45.6, 8.0 visits/clinic/day, 95% CI 2.1 to 13.8). CONCLUSIONS: In rural KZN, we identified a significant, although temporary, reduction in child healthcare visitation but general resilience of adult ambulatory care provision during the first 4 months of the lockdown. Future work should explore the impacts of the circulating epidemic on primary care provision and long-term impacts of reduced child visitation on outcomes in the region

    Subcellular Localizations of Catalase and Exogenously Added Fatty Acid in Chlamydomonas reinhardtii

    No full text
    Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than β -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during β-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over β-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism

    The Effect of Linear Approximation and Gaussian Noise Assumption in Multi-Sensor Positioning through Experimental Evaluation

    Full text link
    Assumptions of Gaussianity in describing the errors of ranging data and linearization of the measurement models are well-accepted techniques for wireless tracking multi-sensor fusion. The main contribution of this paper is the empirical study on the effect of these assumptions on positioning accuracy. A local positioning system (LPS) was set up and raw data were collected using both the global satellite navigation system (GNSS) and the LPS. These data were fused to estimate position using both an extended Kalman filter (EKF) and a particle filter (PF). For these data, it was shown that the PF had an improvement in accuracy over the EKF of 67 cm (72%) with achieved accuracy of 26 cm. This improvement was attributed to the PF handling the non-linear system dynamics, rather than a linear approximation as in the EKF. Furthermore, when the PF used the fitted three-component Gaussian mixture model as the better approximation of the actual LPS ranging error distribution, rather than a Gaussian approximation, a further 3 cm (13%) reduction in positioning error was observed. Overall, the average accuracy of 23 cm was achieved for the proposed multi-sensor positioning system when the assumptions of Gaussianity are not made and the non-linear measurement model is not linearized

    Alternates Peroxisomal Contents in Response to Trophic Conditions

    No full text
    is a model green microalga capable of heterotrophic growth on acetic acid but not fatty acids, despite containing a full complement of genes for β-oxidation. Recent reports indicate that the alga preferentially sequesters, rather than breaks down, lipid acyl chains as a means to rebuild its membranes rapidly. Here, we assemble a list of potential peroxins (PEXs) required for peroxisomal biogenesis to suggest that has a complete set of peroxisome biogenesis factors. To determine involvements of the peroxisomes in the metabolism of exogenously added fatty acids, we examined transgenic expressing fluorescent proteins fused to N- or C-terminal peptide of peroxisomal proteins, concomitantly with fluorescently labeled palmitic acid under different trophic conditions. We used confocal microscopy to track the populations of the peroxisomes in illuminated and dark conditions, with and without acetic acid as a carbon source. In the cells, four major populations of compartments were identified, containing: (1) a glyoxylate cycle enzyme marker and a protein containing peroxisomal targeting signal 1 (PTS1) tripeptide but lacking the fatty acid marker, (2) the fatty acid marker alone, (3) the glyoxylate cycle enzyme marker alone, and (4) the PTS1 marker alone. Less than 5% of the compartments contained both fatty acid and peroxisomal markers. Statistical analysis on optically sectioned images found that simultaneously carries diverse populations of the peroxisomes in the cell and modulates peroxisomal contents based on light conditions. On the other hand, the ratio of the compartment containing both fatty acid and peroxisomal markers did not change significantly regardless of the culture conditions. The result indicates that β-oxidation may be only a minor occurrence in the peroxisomal population in , which supports the idea that lipid biosynthesis and not β-oxidation is the primary metabolic preference of fatty acids in the alga
    corecore